Shared link from vulog .
Posted by salman on 12/21/2022, 10:13:51 PM

Posted on 12/21/2022, 10:13:51 PM
benedict evans   By ()
ChatGPT and the Imagenet moment — Benedict Evans
The wave of enthusiasm around generative networks feels like another Imagenet moment - a step change in what ‘AI’ can do that could generalise far beyond the cool demos. What can it create, and where are the humans in the loop?
Instead of people trying to write rules for the machine to apply to data, we give the data and the answers to the machine and it calculates the rules. This works tremendously well, and generalises far beyond images, but comes with the inherent limitation that such systems have no structural understanding of the question - they don’t necessarily have any concept of eyes or legs, let alone ‘cats’. 
If I ask for ‘the chest burster scheme in Alien as directed by Wes Anderson’ and get a 92% accurate output, no-one will complain that Sigourney Weaver had a different hair style. But if I ask for some JavaScript, or a contract, I might get a ‘98% accurate’ result that looks a lot like the JavaScript I asked for, but the 2% error might break the whole thing. To put this another way, some kinds of request don’t really have wrong answers, some can be roughly right, and some can only be precisely right or wrong, and cannot be ‘98% correct’.
Yahoo tried paying people to catalogue the entire web one site at a time, and that was unscalable. Google, on one side, is based on the patterns of aggregate human behaviour of the web, and on the other side it gives you ten results and makes you pick one - manual curation by billions of users. The index is made by machine, but the corpus it indexes is made by people and the results are chosen by people. In much the same way, generative networks, so far, rely on one side on patterns in things that people already created, and on the other on people having new ideas to type into the prompt and picking the ones that are good
But the other side of this is that ML gives you not infinite interns but one intern with super-human speed and memory - one intern who can listen to a billion calls and say ‘you know, after 300m calls, I noticed a pattern you didn’t know about…’
Posted by salman on 12/21/2022, 10:13:51 PM
Key words: